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Revisiting the soil carbon saturation concept
to inform a risk index in European
agricultural soils

T. S. Breure 1 , D. De Rosa 2, P. Panagos 1, M. F. Cotrufo 3, A. Jones1 &
E. Lugato 1

The form in which soil organic carbon (SOC) is stored determines its capacity
and stability, commonly described by separating bulk SOC into its particulate-
(POC) andmineral-associated (MAOC) constituents. MAOC ismore persistent,
but the association withmineral surfaces imposes amaximumMAOC capacity
for a given fine fraction content. Here, we leverage SOC fraction data and
spectroscopy to investigate POC/MAOC distribution, together with SOC
changes data over 2009–2018 period, across pedo-climatic zones in the Eur-
opean Union and the UK. We find that rather than a universal mineralogy-
dependent maximum MAOC capacity, an emergent effective MAOC capacity
can be identified across pedo-climatic zones. These findings led us to propose
the SOC risk index, combining SOC changes and effective MAOC capacity. We
find that between 43 and 83Mha of agricultural soils are classified as high risk,
mostly constrained to cool and humid regions. The index provides a synthetic
information to decision makers for preserving and accruing POC and MAOC.

The pathway to climate neutrality foresees the contribution of the land
to offset the residual sectorial greenhouse gas emissions by 2050,
incrementing the carbon (C) removal from vegetation and soil. In the
European Union (EU), operative policy instruments to increase the
land C sink are atmospheric carbon dioxide (CO2) removal targets in
the land use, land use change and forestry (LULUCF) regulation1 aswell
as the recent Carbon Removal Certification regulation2, including
carbon farming. Agricultural soils in the EU, in particular, are depleted
in soil organic carbon (SOC) as compared to other land uses3. Fur-
thermore, the majority of EU agricultural soils are far from saturation
of the stable mineral-associated organic carbon (MAOC) fraction4,5,
allowing the storage of additional C by changing to appropriate
management practices6,7. However, a recent data-driven study esti-
mated a relative SOC loss of 0.75% for the period 2009–2018 in Eur-
opean agricultural soils8. These SOC losses occurred despite
the introduction of both mandatory and voluntary schemes in 2013,
aiming at increasing agricultural sustainability9.

Assessing current bulk SOC content and its change over time
(ΔSOC), while fundamental, does not provide enough information for
effective SOC sequestration interventions. In the last decades, a new
conceptual framework has highlighted the advantage to separate bulk
SOC in two fractions that underlie prevailing mechanisms of SOC
formation and stabilization, namely the MAOC and the particulate
organic carbon (POC)10. MAOC is mostly composed of plant and
microbial derived compounds low in molecular weight, which can be
stabilized by interaction with the soil matrix via sorption and physical
protection11. Consequently, MAOC is more resilient to degradation
compared to POC, and it has a lower turnover time on average4 which
promotes the long-term accrual of atmospheric CO2 into soil. How-
ever, MAOC has a ‘theoretical mineral capacity’ due to a finite number
of mineral surface binding sites, as postulated and demonstrated by a
large body of studies12–14. Therefore, the degree of MAOC saturation
indicates the proportion of measured MAOC over the theoretical
capacity. The theoretical mineral capacity is commonly calculated
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based on soil texture and claymineralogy to benchmark the saturation
deficit of soils from global databases15,16. Here, we argue that this
mineralogical capacity has a low practical importance for carbon
accrual actions as, for instance,Mediterranean soils would never reach
the MAOC content of acidic soils under the cold climate of northern
Europe, even when sharing the same texture17,18. Commonly, the
method used to calculate a unifying theoretical mineral MAOC capa-
city consists of pooling data together from different soil types, envir-
onmental and management conditions. Then, a linear regression is
applied between MAOC and the soil’s fine fraction content separately
for high and low activity minerals (e.g. Georgiou et al.16). However, this
approach does not acknowledge that the theoretical mineral capacity
may not be achievable as MAOC storage is constrained by additional
emerging ecosystem properties19 that regulate SOC formation and
stabilization such as pH, microbiome characteristics, type of litter and
plant productivity4,20–24. The theoreticalmineral capacity has also been
questioned by recent studies25, suggesting oversaturation of mineral
particles due to the binding of organic matter to other organic matter
bonded to minerals, therewith posing the fundamental question to
what degree of surface loading MAOC can be still considered as “sta-
bilized” by mineral-association26.

Based on these premises,we use a clustered approach to calculate
the ‘effectiveMAOCcapacity’.We followedStewart et al. (2007), in that
an apparent saturation limit can be reached since pedo-climatic and
management conditions impose constraints even with increased C
inputs18. The effective MAOC capacity in our clustered approach thus
constitutes the biophysically achievable MAOC given the cluster’s
pedo-climatic properties, for soils under agricultural land use (Sup-
plementary Fig. 1). Further, to account for the oversaturation of
mineral particles25,27, we formulated three different regression meth-
ods to estimate the effective MAOC capacity.

Additionally, we leveraged information from four datasets tomap
a risk index (Supplementary Fig. 1): i) the SOC content in locations that
have been repeatedly surveyed (2009-2018) in the EU Land Use and
Land Cover Survey (LUCAS)28,29, ii) the SOC changes (ΔSOC) between
the repeated surveys8, iii) associated visible- and near-infrared (VNIR)
spectroscopy measurements30, and iv) a subset of measured SOC
fractions3,27. The risk index builds on the exposure-vulnerability-hazard
concept from the Intergovernmental Panel on Climate Change31,

(Fig. 1). The exposure component consists of the areal extent, which
are all soils under agricultural land use. The hazard is represented by
ΔSOC, which is the effect of climate andmanagement on SOC storage.
Vulnerability is represented by the level of MAOC saturation within
biophysically homogeneous European agricultural regions. We sug-
gest that mapping the vulnerability and hazard components of agri-
cultural SOC is informative for SOC management. While we applied
this conceptual framework to the EU, which may be further refined
with additional data, we suggest to apply it in other regions to identify
areas at risk of SOC loss as well as areas with the highest potential for
SOC accrual.

Results and discussion
Clustering of pedo-climatic zones across Europe
Bulk SOC storage is known to be an ecosystem property controlled by
climatic conditions, management, plant productivity, soil properties
such as texture and pH, and geomorphological features such as ele-
vation or slope19,21,23. Therefore, approaches using pedo-climatic clus-
tering can provide reliable estimates of bulk SOC storage, as recently
demonstrated across Europe32.

Similarly to bulk SOC, fractions vary with environmental, geo-
chemical and landform gradients22,24. Thus, accounting for these con-
ditions by applying a clustering approach can enable more accurate
estimation of the effective MAOC capacity24. We therefore applied a k-
means clustering procedure based on aridity33, net primary
productivity (NPP)34, measured pH in H2O

28 and landform35 for the
LUCAS soil sampling locations. Soil pH was included as a proxy of clay
mineralogy and SOC turnover (microbial composition), landform to
account for how the erosion and depositional setting affects pre-
ferential displacement of SOC fractions, NPP as a driver of saturation
through C inputs36 and aridity as a synthetic climate parameter con-
trolling SOC storage37–39. We identified sixteen pedo-climatic clusters
such as the coastal areas in mid- and southern-Europe (cluster 1)
(Fig. 2), which generally receive high precipitation rates and show a
large net primary productivity (Fig. 2b).

Relatively arid Mediterranean areas were attributed to separate
clusters (3, 4 and 13), depending on their differences in landform,
whereas their pH range was comparable. Other characteristic pedo-
climatic zones were temperate lowland areas and the acid soils in
north-western Europe (clusters 2, 5 and 15; Fig. 2). Pedo-climatic clus-
ters also varied across smaller geographical scales. For example, con-
sidering the island of Sardinia (IT), the coastal areas were separated
from the inland which showed further variation depending on the
landform and soil pH (Fig. 2a).

MAOC and POC predictions and total SOC changes in
agricultural soils
Based on a subset of measured C fractions3, we predicted POC and
MAOC for the remainder of the LUCAS 2009 survey using visible near-
infrared (VNIR) soil spectra. The VNIR spectra allowed for an inde-
pendent estimate of POC and MAOC from the covariates used in the
pedo-climatic clustering. Predicted MAOC showed good correspon-
dence with measured values for the validation dataset, although to a
lesser extent for POC (Supplementary Fig. 2). However, predicted POC
andMAOC (i.e. POC+MAOC) showed relatively good correspondence
with measured bulk SOC (Supplementary Fig. 3a), considering the
number of samples and geographic extent of the LUCAS survey
(R2 = 0.59, RMSE = 8.8 g kg−1, RPIQ = 1.7, Bias = 0.48, CCC=0.76). We
related the MAOC:SOC ratio to predicted carbon changes (ΔSOC)
between the 2009–2018 surveys based onDeRosa et al.When plotting
ΔSOC versus the MAOC:SOC ratio, pedo-climatic clusters showed
different ranges for both variables (Fig. 3). Based on a linear least-
squares model, all clusters showed a positive slope, where the inter-
action term of ΔSOC x Cluster was significant for different slope esti-
mates (Supplementary Fig. 4, Supplementary Table 1–2). The positive

Fig. 1 | Soil organic carbon (SOC) risk framework. based on the exposure-hazard-
vulnerability risk concept from the Intergovernmental Panel on Climate Change
(IPCC)31. Soil organic carbon under agricultural land use is considered exposed.
Vulnerability, the mineral-associated organic carbon (MAOC) saturation, deter-
mines the magnitude of the exposure. The hazard (soil organic carbon changes,
ΔSOC) is the integrated effect of climate change and land use that acts on
exposed SOC.
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slope suggests that SOC losses (negative ΔSOC) were generally asso-
ciated with both a higher contribution of POC to total SOC (i.e., low
MAOC:SOC ratio) and a high POC content (g kg−1 of soil; Fig. 3). These
results are in line with previous findings, suggesting that POC is more

vulnerable to disturbance than MAOC3,38, and that MAOC is respon-
sible for the largest amount of SOC increase fromhigh quality inputs in
agriculture40,41. Furthermore, cold and wet regions (clusters 5 and 15)
had a lower MAOC:SOC ratio and high POC content (Fig. 339,). Data
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Fig. 2 | Allocated clusters based on the k-meansmethodusing theHartigan and
Wong (1979) algorithm.aGeographical representation of the LUCAS 2009 survey.
bBoxplots of aridity, landform, net primary productivity (NPP) and soil pH used for

the k-means in their original scale, by cluster association (n = 13,295). Vector map
data used from the ‘rnaturalearth’ R package81. Copyright (CC0) (2025), (CRAN).

Fig. 3 | Predicted changes in soil organic carbon (ΔSOC) versus the predicted
mineral-associated organic carbon fraction (MAOC) of total soil organic car-
bon [MAOC:SOC ratio (with SOC=MAOC+POC)]. colored by the soil particulate

organic carbon (POC) concentration for each pedo-climatic cluster. Cluster numbers
are as in Fig. 2. r is the Pearson’s correlation coefficient, α and β are the intercept and
slope estimates of the linear least-squares model (solid black line). (n= 5482).
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points with SOC gains (positive ΔSOC) generally showed higher
MAOC:SOC ratios (Fig. 3; Supplementary Fig. 4), although SOC losses
occurred also in soilswith highMAOC:SOC ratio, due to varying typeof
perturbations driving SOC changes at the LUCAS sites.

Estimating the effective MAOC capacity by clusters
Given that MAOC is less associated with SOC losses by perturbation
than POC, efficient C management should better consider the degree
to which soils are from their effective MAOC capacity, which we
hypothesized being an emergent property of pedo-climatic clusters.
We further formulated three different methods to estimate the effec-
tive MAOC capacity based on underlying MAOC saturation the-
ory (Fig. 4).

The concept of MAOC saturation was first proposed by Hassink
(1997) that describedMAOC saturation as a linear function of the soil’s
fine fraction content (clay + silt content)12. Successively, Feng et al.
proposed the boundary line (BL) regression as a method to better
restrict the inference to data from soils close to MAOC saturation15

(Fig. 4). Herewepropose a variation of the BLmethod, whichwe called
PBL, to better isolate soils that have mineral association between
organic carbon and the fine fraction. Conversely, suggesting over-
saturation of mineral particles due to the binding of organic matter to
other organic matter bonded to minerals25, we used a non-linear
regression (NBL) to calculate the MAOC saturation (Fig. 4).

Following the different approaches illustrated, we performed
quantile regressions to determine the cluster effective MAOC capacity
(Supplementary Figs. 5–7). Parameter estimates varied by up to 200%
between pedo-climatic clusters (Supplementary Figs. 5–7), which
provides evidence that the effective MAOC capacity is an emergent
property based on pedo-climatic conditions19,24. From the pedo-
climatic variables used in the clustering, aridity and net primary pro-
ductivity showed larger effects on the spread of parameter estimates
compared to pH and landform. This suggests that aridity and NPP play
a larger role in the distinction between the theoretical and effective
MAOC capacity for our dataset (Supplementary Fig. 8), although the
importance of pedo-climatic controls might vary across different
regional scales22.

However, the functional relationship of the BL method did not
seem to fit the data well for most clusters, since the 90th quantile
regression line under-fits for coarse soils (i.e., low in fine fraction
content) and over-fits for soils high in fine fraction content (Supple-
mentary Fig. 5). Thisfitting phenomenonhas been reported previously
in a study forGerman soils5 andour studyprovides further evidence on
a continental scale. The estimatedMAOC capacity for the PBLmethod
was less variable between clusters compared to the BL method. The

estimated breakpoints, however, varied widely in their magnitude
between clusters (19–68 %), depending on the level at which MAOC in
fine fraction reached a plateau (Supplementary Fig. 6). The non-linear
NBL method allowed for a good fit of the upper boundary accounting
for a slight increase in MAOC along the fine fraction range (Supple-
mentary Fig. 7). Recently, Viscarra-Rossel et al. estimated the effective
MAOC capacity across the Australian continent by soil groups. Their
regression method is analogous to the underlying theory of our NBL
method, in that it assumes a fine fraction-dependent MAOC con-
centration. To align with the existing literature, we have included
estimates based on their method (Supplementary Fig. 9). These esti-
mates canbeconsidered anupper-limit of the effectiveMAOCcapacity
for our dataset, given that the frontier linemethod is specifically aimed
at estimating the maxima of the data24. We preferred to use a more
conservative quantile approach (see Method section), the parametric
nature of which allows for comparison with previous studies.

Whereas two of our proposed regression methods to estimate
MAOC saturation are novel to this study (Fig. 4), there are few studies
that used the exact same regression type (90th quantile, 0 intercept) to
determine MAOC saturation42. Here we compared our results to the
existing literature. We first converted all parameter estimates to the
sameunit (gMAOC in kg−1 soil). Themean of theβparameter estimates
across clusters for the boundary line method (BL) was 45.1 ± 11.3 (SD)
(Supplementary Fig. 5). Themean α value for the piecewise regression
method (PBL)was 34.1 ± 6.6 (SD). Differences between the PBLmethod
compared to the BL method occur because the MAOC concentration
for soils low in fine fraction is assumed to be contaminated by POC or
characterized by organo-organo C bonds25,26 and, thus, identified
before the estimated breaking-point in the piecewise regression
(Supplementary Fig. 6). These results show that disregarding coarse
soils with high MAOC content leads to lower estimates of the effective
MAOC capacity. The mean estimate for the NBL method was 40 ± 17
(SD) and spanned the largest range across pedo-climatic zones (Sup-
plementary Figs. 5–7). The upper limit parameter values for the BL and
PBLmethods (62, 45, respectively) were lower than for NBL (79), which
approximated previous estimates for 2:1 mineral dominated soils:
84 ± 4 (SE) (15, 90th quantile regression) and 86 ± 9 (90% CI) (16, 95th

quantile regression).
Given the LUCAS sampling design, our analysis is likely to be

representative of the most abundant soil types across Europe28. How-
ever, the dataset that we used to calibrate VNIR spectra against C frac-
tions to predict the 6,548 samples is relatively small and therefore can
impose a limitation. For example, recent studies42 pointed to soils with
higher MAOC content that may be formed under particular conditions
(e.g., very high clay, hydromorphic conditions) and can exceed 50gkg-1
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boundary line (NBL) assumes that MAOC content can change across the fine
fraction range; effective MAOC capacity includes SOC organic layers that interact
via organo-organo C bonds rather than directly to the clay surface. All regressions
were done for the 90th quantile with a forced intercept to 0 as per Feng et al. Data
and fitting statistics for the LUCAS survey is presented in Supplementary Figs. 5–7.
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MAOC5; the maximum MAOC content in the C fraction dataset used in
this study. For example, MAOC accumulation can occur due to oxygen
limitation rather than mineral stabilization42, such as in Stagnosols.
Another component that might interfere with MAOC accounting is the
presence of geogenic C, i.e., the organic C present in the bedrock that
was deposited during sedimentation42,43. These findings further support
that a clustered approach is more meaningful for the inference of
effectiveMAOC capacity fromdata spanning a broad range of soil types.
That is, disaggregation prevents a limited number of points, potentially
belonging to one particular soil type, from having high leverage in the
regression. Future research could investigate how oxygen limited con-
ditions and geogenic C affect regional estimates of MAOC saturation.
Nevertheless, we have also investigated the effect of including the

existing legacy soil C fraction data5,16 on the parameter estimates (Sup-
plementary Figs. 10–13). Based on these results, we anticipate that the
exclusion of soil underrepresented in the LUCAS dataset might under-
estimate the maximum MAOC capacity for fine-textured soils in some
pedo-climatic clusters. Nonetheless, the mean estimate across our EU
pedo-climatic clusters was more similar to those found for 2:1 mineral
dominated soils (global coverage) under cropland: 45 ± 5(SE)15 (Supple-
mentary Figs. 5–7). Also the estimates for non-clustered data align very
closely with that of Feng et al. for 2:1 mineral dominated soils under
cropland15 (Supplementary Fig. 14).

Similar differences between regressionmethods were found after
calculating the degree (as percentage) of MAOC saturation (MAOC /
effective MAOC capacity x 100%) and computing the mean and its

Fig. 5 | Degree ofmineral-associatedorganic carbon (MAOC) saturation (MAOC /
effective MAOC capacity x 100%) as a function of fine fraction (clay + silt, %).
Values below 100% indicate a saturation deficit relative to the cluster-dependent

effectiveMAOCcapacity. Fine fraction content has beenbinnedby intervals of 10%,
points and lines represent the mean degree of MAOC saturation ± standard
deviation for each bin. The y-axis is on a log10 scale. (n = 6548).
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standard deviation for fine fraction intervals by cluster (Fig. 5). Values
below 100% indicate a saturation deficit relative to the cluster-
dependent effective MAOC capacity. The figures where the degree of
MAOC saturation has not been binned by fine fraction intervals can be
found in Supplementary Fig. 15.

When the BL or PBL was applied, MAOC content exceeded the
theoretical saturation ( > 100%) in sandy soils likely because the
quantile regression is underfitting the data low in fine fraction
content. In total, 1202 samples exceeded 100% for BL and
1408 samples for PBL. For fine soils, the BL generally estimated
lower MAOC saturation compared to the other methods. The NBL
method did not frequently exceed 100% saturation (708 samples)
and remained more constant across the range of fine fraction con-
tent compared to the other two methods. These characteristics can
be attributed to a better fit across the range of fine fraction content,
reducing variability in MAOC saturation at the extremes. However,
we restrictedMAOC saturation estimates to a maximum of 100% for
subsequent analysis, under the assumption that any values above
100% indicate saturation.

The SOC risk index
Since we demonstrated that effective MAOC saturation is cluster-
dependent and interplaying with SOC vulnerability, here we propose a
synthetic ‘risk index’, whichmayguidemost effective action to protect
or accrue SOC. We did this by borrowing the hazard-exposure-
vulnerability risk framework used by the Intergovernmental Panel on
Climate Change31 (Fig. 1). Soil organic carbon under agricultural land
use is considered exposed to anthropogenic and environmental dri-
vers, and thus determines the areal extent of soils under exposure in
the EU. The degree of MAOC saturation was taken as a measure of
vulnerability, given that soils saturated in MAOC are more likely to
either have ahigh SOCcontent and/or haveproportionally higher POC.
The SOC changes (ΔSOC) were considered as the level of hazard, that
is, SOC changes driven by climatic conditions and land management8.
By assessing the degree of hazard and vulnerability, we constituted
four index classes (high risk, high hazard, no risk, no hazard) that allow
for a spatial assessment of SOC status. High hazard (HH) and high risk
(HR) are both subject to SOC losses but have low and high levels of
vulnerability, respectively (MAOC saturation below or above the
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Fig. 6 | Geographical representation of mineral-associated organic carbon
(MAOC) degree of saturation (MAOCsat) and the soil organic carbon (SOC)
risk index. a degree of MAOC saturation mapped to grid cells by cluster-specific
MAOC saturation relationship for fine fraction bins. Values below 100% indicate a
saturation deficit relative to the cluster-dependent effective MAOC capacity.
Panels correspond to different methods to estimate the effective MAOC capacity
(see Fig. 4). b follows the same panel structure and shows the SOC risk index:

whetherMAOC saturation is above or below itsmedian andwhetherΔSOC is below
0 or not. ‘HR’: high risk, negativeΔSOC,MAOC saturation abovemedian. ‘HH’: high
hazard, negative ΔSOC and MAOC saturation below the median. ‘NR’: no risk,
positive ΔSOC and MAOC saturation below the median. ‘NH’: no hazard, positive
ΔSOC and MAOC saturation above the median. Vector map data used from the
‘rnaturalearth’ R package81. Copyright (CC0) (2025), (CRAN).
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medianof68.9%). No risk (NR) andnohazard (NH) have SOCgainswith
low and high vulnerability, respectively (Fig. 1, Fig. 6b).To assess the
SOC risk index across Europe, we imposed the effective MAOC capa-
city as a function of the fine fraction for each pedo-climatic cluster
(Method section, Supplementary Figs. 16–17). Upscaling the clusters
thus allowed us to: i) map the degree of MAOC saturation across
Europe and relate these estimates to ΔSOC and ii) reclassify both
MAOC saturation and ΔSOC to assess the SOC risk index in agri-
cultural soils.

The PBL method calculated a higher MAOC saturation in particular
for the Baltic Sea area, northern UK and the Iberian Peninsula, although
it followed the same geographical pattern as the BL method (Fig. 6a).
This reflects that the PBL method estimates a lower effective MAOC
capacity for coarse textured soils. That is, the abovementioned regions
are characterized by low clay content and/or high sand. The NBL
method was distinct compared to the two other approaches given its
relative narrow range ofMAOC saturation across Europe. For example, a
smaller area is calculated to be MAOC saturated (mostly restricted to
Denmark and north-east Germany) (Fig. 6a), likely due to a better fit for
coarse soils leading them to have lower MAOC saturation (Fig. 5). The
differences in MAOC saturation across Europe illustrate how the meth-
odological decision to calculate the MAOC capacity can have implica-
tions for SOC management. The NBL method seemed to provide a
better fit to our data, given the assumption that MAOC content can
change across the fine fraction range, suggesting that future work

should be directed towards the NBLmethod.Whereas the type (mineral
or organo-organo) and strength of C bonds can only be evaluated at
nanoscale level with time- and cost-intensive analysis, we suggest that
the NBLmethod can lead to a less-biased quantification of the SOC risk.

The SOC risk index showed amore refined distinction in C accrual
potentials compared to considering only the MAOC saturation
(Fig. 6b). Across Europe, there are a variety of locations that are under
high hazard, in the sense that they are characterized by a negative
ΔSOC but are below the median MAOC saturation (‘HH’), spanning
between 30–70 Mha, depending on the regression method. This
situation occurs in particular across Scandinavia, central England,
western France and some parts of the Mediterranean. The opposite
combination, above the median MAOC saturation and positive ΔSOC
(‘NH’), occurs in the northern UK, the Massif Central (FR), as well as in
Austria and southern Germany. The areal extent under no hazard, ‘NH’,
ranges from 25–48Mha. Locations that are at high risk, above median
MAOCsaturation andnegativeΔSOC (‘HR’) cover anareaof 43–83Mha
and occur mostly in countries bordering the Baltic Sea as well as
northern Germany and east England. Lastly, the areas where SOC is
least sensitive to losses and are at deficit in MAOC (below median
MAOC saturation) are in the no risk class (‘NR’). These areas could be
potential locations for efficient C accrual through carbon farming. The
main areas stretch from thewest-coast Europe towards the east, across
the countries of northern France, Belgium, and southern Germany to
Hungary.Other notable locations include southwestern Franceand the
Po valley (IT) (Fig. 6b). The total area for the ‘NR’ category covers
26–50Mha. We note, however, that we have listed generic geographic
patterns here and there is large variability within different pedo-
climatic zones, also depending on the regression method (BL, PBL,
NBL) used. The ‘high hazard’ and ‘high risk’ index classes were asso-
ciated with larger uncertainty, given the larger range in their areal
extent based on an uncertainty propagation analysis (Table 1).

Overall, however, there was 59.6% agreement between all three
regression methods on the SOC risk index, while there was some
method-dependent spatial disagreement, in central and south-west
England, the Iberian peninsula and south Germany (Supplementary
Fig. 18). The ratio between agreement/disagreement varied strongly
between SOC risk index classes (Table 2), in particular for classes
below the median MAOC saturation (NR and HH). These differences
can likely be attributed to the different assumption of each regression
method to estimate the effective MAOC capacity for coarse soils.
Based on this ‘convergence of evidence’ approach, we conclude that
the SOC risk index provides robust information for areas where to
prioritize measures to revert degrading processes or protect the
existent SOCpool (HR andNHclasses), while there ismoreuncertainty
on areas suitable and with some potential for SOC accrual (NR and HH
classes).

Table 1 | Summary table of the corresponding area (Mha) for
each SOC risk index class

SOC risk index Method Mean Q5 Q95

High hazard (HH) BL 59.2 54.4 61.7

PBL 30.0 25.9 33.7

NBL 69.8 67.0 75.4

No risk (NR) BL 46.0 42.6 48.0

PBL 26.2 23.6 29.1

NBL 49.5 47.0 52.3

High risk (HR) BL 54.0 51.5 58.9

PBL 83.2 79.5 87.3

NBL 43.4 37.8 46.2

No hazard (NH) BL 28.7 26.7 32.0

PBL 48.5 45.5 51.0

NBL 25.1 22.4 27.6

Fordetails on the regressionmethods, see Fig. 4 in themainmanuscript. Themean values inMha
correspond to the values discussed in the main text, whose spatial patterns across Europe are
provided in Fig. 6b. Q5 andQ95 refer to the 5th and 95th quantiles that were calculated based on
an uncertainty propagation analysis (Methods section, Supplementary Figs. 22-23).

Table 2 | Agreement between methods to estimate effective mineral-associated organic carbon (MAOC) capacity and their
estimated area for each soil organic carbon (SOC) risk index class in million hectare (Mha)

Agreement SOC risk index MAOC ΔSOC Area (Mha) %

Agreement High hazard (HH) <median < 0 27.5 46.4

No risk (NR) <median > 0 24.6 53.5

High risk (HR) >median < 0 39.0 72.2

No hazard (NH) >median > 0 20.8 72.6

Disagreement High hazard (HH) <median < 0 31.7 53.6

No risk (NR) <median > 0 21.4 46.5

High risk (HR) >median < 0 15.0 27.8

No hazard (NH) >median > 0 7.9 27.4

Agreement means that all three methods allocate a raster cell to the same SOC risk index class. The relative percentage of agreement between the regression methods is calculated as area of
agreement / total area for each SOC risk index class. Where the SOC risk index classes based on the non-linear boundary line (NBL)method have been taken as a reference for Table 2. The columns
MAOC and ΔSOC indicate which quadrat of the risk index that row belongs to (Fig. 6b). For details on the regression methods, see Fig. 4 in the main manuscript.
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The magnitude of saturation also determines the rate of soil C
accrual16,44, whichaffects the extent towhich carbon farming is likely to
be a cost-effective practice45. Conversely, the risk index is built on the
concept that soils close toMAOC saturation lead tomore rapid losses,
as shown in a global synthesis16, due to higher POC content andweaker
MAOC sorption/bonds to the mineral matrix11,13,44. Our data showed
that high levels of MAOC saturation also led to higher C losses on a
continental scale, consistently across all three boundary line regres-
sion methods (Supplementary Fig. 19, Supplementary Table 3). We
further note that suitability for soil C accrual or SOC protection mea-
sures should not only focus on the degree of saturation but also on the
absolute amount (i.e. in terms of g kg-1 of C) of MAOC. For example,
locations that are under low risk and, thus, have more potential for
SOC accrual (‘NR’), have a range of effective carbon storage potentials,
which depends on their pedo-climatic cluster associations and the
boundary line regressionmethod (Supplementary Fig. 20).Whileother
biophysical limitations exist for SOC accrual practices, such as the
availability of nutrients46,47 and soil depth17, our index identifies
potential regions for C accrual and protection, acknowledging con-
straints in terms of soil characteristics, NPP, climate and land use.
Socio-economic and technical constraints may also limit the adoption
of farming activities that aim at accruing or protecting SOC as, for
instance, access to farm advisory services or risk aversion with respect
to alternativemanagement practices48. Future research could focus on
expanding the MAOC dataset by additional soil sampling and C frac-
tion measurements, to cover a wider range of soils and environmental
conditions. Lastly, we have shown that calculating the degree of C
saturation is affected by methodological decisions and we hope that
our findings lead to further research towards a unified approach.

Methods
Analytical data
The LUCAS dataset consists of records from a 2009 sampling cam-
paign, based on a random sampling design stratified by land use and
topography. Soil cores were taken at a depth of 0–20 cm, see Tóth
et al. for further details28. The bulked soil samples were air-dried and
sieved to their < 2mm fractions. Soil analytical data for clay, silt,
organic carbon and pH in H2O was determined by standard methods
following ISO protocols (Supplementary Table 4). Soil spectra in the
visible- and near-infrared range (VNIR, 380–2500 nanometer (nm)
range) were measured with a XDS Rapid Content Analyzer (FOSS
NIRSystems, Inc., Denmark) at 0.5 nm spectral resolution. The proto-
cols of the instrumentmanufacturer and the soil spectroscopy group49

where followed for the spectroscopicmeasurements. For each sample,
the mean spectrum was taken of two replicates. We restricted the
LUCAS 2009 dataset to locations that were both under agricultural
land use, as recorded by the surveyors corresponding to cropland and
grassland under 1000m a.s.l8., and had associated VNIR spectra
(n = 13,295).

The analytical soil C fraction data was originally measured for a
selection of soil samples from the LUCAS 2009 survey3, the procedure
of which we briefly summarize here. Firstly, the aggregates were dis-
persed. Five grams of oven dried, <2mm sieved soil was shaken for
18 hours in dilute (0.5%) sodiumhexametaphosphatewith beads. After
aggregate dispersion, samples were fractionated by size through rin-
sing the soil samples onto a 53 µm sieve (see3,27 for further details).
Where the < 53 µm fraction was consideredMAOC and the > 53 µmwas
considered POC50. We then also restricted the soil C fraction dataset to
locations that were both under agricultural land use and had asso-
ciated VNIR spectra (n = 240).

The processing of the spectra was done by sub-setting every 10th

wavelength, trimming the spectra to the range of 400—2450nm and
computing the 1st derivative. Subsequently, the H2O bands were
removed from the spectra by excluding the 1350—1460nm and 1790—
1960 nm wavelength regions51.

Calibration regression
Based on the results from an exploratory analysis (Supplementary
Fig. 2), we decided to use a local partial least squares regression
method. For the calibration regression method, we adapted the
method described in Summerauer et al. (2021) to our purpose52. We
used the moving-window correlation as a metric to select k-nearest
neighbors based on spectral similarity. In order to choose the window
size, we computed the RMSE between nearest neighbors for different
window sizes (11-151 in steps of 10). We selected the window size with
the lowest RMSE (Supplementary Fig. 21). After the nearest neighbors
had been selected, a local model was fitted based on the weighted
average partial least squares regression algorithm as per Shenk et al.
(1997)53. For each number of components used in the PLS, from 1 to j, a
weight is calculated based on the spectral residuals of the observation
to be predicted. These weights are then used to average multiple PLS
models computed for different number of components:

wj =
1

δ1:jgj
ð1Þ

Where δ1:j is the RMSE of the spectral residuals for a predicted sample
based on j PLS components, gj is the RMSE of the regression coeffi-
cients which corresponds to the jth PLS component (more details in
ref. 53). We considered a range of 5 to 15 PLS components.

The number of k-nearest neighbors was optimized by using nearest
neighbor cross-validation54 (Ramirez-Lopez et al. 2013). This method is
essentially equivalent to a leave-one-out approach where for k nearest
neighbors, each neighbor is excluded iteratively and predicted by a
weighted PLS regression using the k-1 nearest neighbors. The predic-
tions are then cross-validated against their analytical values. We con-
sidered a value of k between 20 and 100 where the final k value was
selected based on the minimum RMSE in the nearest neighbor cross-
validation.We then restricted the LUCAS 2009 dataset to the SOC range
of the soil C fraction calibration set (3.6–85.1 g kg-1 SOC, n = 12,019) and
predicted MAOC and POC using the method described above.

Determination of the calibration applicability domain
The aim of the VNIR predictions was to extend the soil C fractionation
data across the entire LUCAS 2009 soil dataset. Thus, we needed to
determine the applicability domainof our calibration regressionbased
on our calibration set (n = 240). An established method to do this for
PLS predictions is through use of the F-ratio55–57. The main idea is to
assess how well the PLS scores can reproduce the spectra of the vali-
dation set compared to those in the calibration set. This is achieved by
dividing the residual variance of the spectra of the validation set by
those of the calibration set:

F =
ðu� buÞTðu� buÞnc

s2c
ð2Þ

Where u is the spectrum of the observation to predicted, bu is the
spectrum of the observation to be predicted produced from the PLS
scores, ns is the number of observations in the calibration set and s2c
the residual spectral variance of the calibration set. We computed the
residual spectral variance of the calibration set with the projected PLS
scores, whereas residual spectral variance of the validation set is
computed by use of the predicted PLS scores. We then computed the
probability of the F-ratio as per Dangal et al. (2019) and assigned a
prediction as being out of the calibration applicability domain for
probabilities exceeding 0.99. We then merged the POC and MAOC
predictions into a single dataset, disregarding outliers for both pre-
dictions (n = 6548) and setting negative predictions to 0. In order to
validate our predictions, we assessed our predictions against the
measured SOC content. We compared the sum of POC and MAOC
(Supplementary Fig. 3a) and SOC predictions directly from the VNIR
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spectra (Supplementary Fig. 3b). We evaluated predictions based on
the following metrics: root mean squared error (RMSE), correlation
coefficient (R2), bias, Lin’s concordance correlation coefficient (CCC)58

and the ratio of the standard prediction error over the inter-quartile
range (RPIQ)59.

We also visually examined the model applicability domain
through the use of principal components analysis (PCA) on the VNIR
spectra. We plotted the joint distribution of the first two PCA com-
ponents (explaining 75.8% of the variance) to assess whether the
samples within the model applicability domain lay within the range of
the calibration set (Supplementary Fig. 3c-d).Wenote that defining the
model applicability domain reduced the number of predictions by
almost half. This can be partially attributed to the limited representa-
tion of the calibration dataset with respect to the LUCAS 2009 survey
(Supplementary Fig. 3c). Ideally samples should span the range of
spectral variability, whichdid not seem to be the case according to this
diagnosticplot. Additionally, the spectral informationmight be limited
in terms of the absorption features related to carbon fractions in the
VNIR range. That is, previous studies have found thatmid-infrared soil
spectra can lead to better predictions of soil C fractions60,61, although
this likely depends on the fractionation method62 and soil character-
istics in the study63.

Clustering
We then clustered the LUCAS dataset (n = 13,295) into pedo-climatic
zones based on a combination of climate, pedological and landscape
factors21–23: i.) measured pH in H2O

28, ii.) landform classes computed
from digital elevation data35, iii.) MODIS/Terra cumulative net primary
productivity (NPP, kg C / m2 / year)34 and iv.) the aridity index (pre-
cipitation / potential evapotranspiration) based on the TerraClim
dataset33. Both NPP and the aridity index were extracted using Google
Earth Engine and themean was calculated over the period 01-01-2001—
01-01-2021 at 1000m resolution.We applied the k-meansmethod using
the Hartigan and Wong (1979) algorithm64. All variables were scaled to
unit variance. We ran the following iteration 100 times for different
seeds (random number generators): within each iteration the k-means
was ran 100 times for different random allocations of initial centers.We
considered a maximum of k = 20 to minimize over-dispersion of the
LUCAS dataset, and selected the number of clusters that minimized the
within-cluster sum of squares based on the elbow method, i.e. the
minimum of the 2nd derivative. From the 100 iterations, we then selec-
ted k that was most frequent (see Suppl. Material for more details).
These cluster associations were then used for the dataset that dis-
regarded outliers of POC and MAOC predictions (n =6548).

Additionally, we computed a random forest regression between
the cluster associations and the variables used in the k-means method
(scaled pH in H2O, NPP, landform and aridity). The regression allowed
us to upscale the cluster associations and thus was used to predict
clusters with 1000m grid resolution and the same extent as the
Europe-wide raster dataset provided in De Rosa et al., reporting SOC
changes in the period 2009–2018 (ΔSOC)8. The raster extent corre-
sponds to areas that were under agricultural land use (cropland or
grassland), as per the Corine Land Cover dataset (https://land.
copernicus.eu/pan-european/corine-land-cover). The pH in H2O and
the fine fraction rasterswere taken from the study by Ballabio et al.65,66.
The raster with predicted cluster associations was used in the last step
of our methodology to calculate the SOC risk index. All rasters that
were not at 1000mgrid resolution (pH inH2O, fine fraction,ΔSOC and
landform) were resampled using bilinear interpolation.

Quantifying the degree of MAOC saturation and the SOC
changes
We explored three different regression methods to estimate the effec-
tive MAOC saturation capacity as a function of the fine fraction, based
on different hypotheses ofMAOC saturation dynamics (Fig. 4). The first

was the boundary line regression (BL)15. The second, PBL, was an
alternativemethod to filter for samples that are likely to contain POC in
the MAOC fraction. This might occur during size separation, both due
to POC fragmentation and dispersion of POC into dissolved organic
carbon (DOC)26,42. We first expressed the predictedMAOC as a function
of the fine fraction (g MAOC in kg-1

fine fraction). We then determined
the break-point of a piecewise linear 90th quantile regression while
constraining the slope of the second linear equation to 0, such that the
effective MAOC capacity was constant across the remaining fine frac-
tion range (as first proposed in Hassink, 199712). Any values prior to the
breakpoint were then considered as MAOC saturated. The breakpoint
was determined through use of the segmented() function in R67. The
third method, NBL, was a non-linear boundary line regression, also on
the 90th quantile and restricting the intercept to 0. For the non-linear
quantile regression we considered a logarithmic model:

y=α +β logðxÞ ð3Þ

where y= the effective MAOC capacity, α =0, β is the coefficient to be
estimated and x is the fine fraction (clay + silt / %). For all three
regression methods, the degree of MAOC saturation was calculated as
(MAOC / effectiveMAOCcapacity) × 100. Values below 100% indicate a
saturation deficit relative to the cluster-dependent effective MAOC
capacity. Values above 100% where considered saturated and set to
100% for subsequent analysis. This procedure was repeated for each
pedo-climatic cluster.

To investigate the change in SOC (ΔSOC) as a function of the ratio
of MAOC to SOC (Fig. 3), we used ΔSOC values obtained from the non-
linear regression model developed by De Rosa et al.8. The trained
model was used to analyze the changes in SOC between the LUCAS
2009 and 2018 surveys across the EU +UK. Since the regressionmodel
used in De Rosa et al. study depends on land use information collected
over time, our analysis was constrained to sites that had repeated
recordings of land use across surveys. As a result our dataset of pre-
dicted MAOC and POC was reduced to 5482 points for our investiga-
tion of ΔSOC as a function of MAOC:SOC (Fig. 3).

The SOC risk index
Lastly, we mapped at 1000m resolution the degree of MAOC satura-
tion and predicted ΔSOC to assess the vulnerability and hazard of
exposed SOC in agricultural lands. We considered the level of risk for
SOC as a function of both vulnerability and the hazard. This concept
follows the framework introduced by the Intergovernmental Panel on
Climate Change31 which we have adapted to our purpose (Fig. 1). The
degree of MAOC saturation was taken as a measure of vulnerability,
given that soils saturated inMAOC aremore likely to either have a high
SOC content and/or have proportionally higher POC. The ΔSOC was
considered as the level of hazard, that is, SOC changes driven by cli-
matic conditions and landuse change8.We transferred the relationship
between the degree of MAOC saturation and the fine fraction content
based on the cluster associations. We did this by calculating the mean
degree of MAOC saturation across fine fraction bins of 10%. We then
mapped the mean MAOC saturation by fine fraction bin (Fig. 5) to a
raster of the pedo-climatic clusters (Supplementary Fig. 17a) and the
fine fraction raster65 that was reclassified to align with the fine fraction
bins. In a fewcases, the rangeoffine fractionbins of thedata (Fig. 5) did
not cover those present in the raster. In that case, we considered the
mean degree of MAOC saturation to be missing and those locations
were thus excluded from the subsequent analysis. Finally, the SOC risk
index was calculated across regression methods (BL, PBL, NBL) by
determining for each raster cell whether: i.) it was above- or below the
median degree of MAOC saturation across Europe, ii.) the ΔSOC was
below 0 or equal to 0 and above. We thus ended up with the following
four classes: ‘HR’: at risk, above the median MAOC saturation and
negative ΔSOC. ‘HH’: high hazard, negative ΔSOC and below the
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median MAOC saturation. ‘NR’: low risk, positive ΔSOC and below the
median MAOC saturation. ‘NH’: positive ΔSOC and above the median
MAOC saturation. Although the median degree of MAOC saturation
across the three regression methods (68%) is arbitrary, there is no
scientific consensus yet on a generic threshold of MAOC saturation
where C accrual diminishes and a C losses become more likely. We
note that the linearmodel fitted on theΔSOCand theMAOCsaturation
(Supplementary Fig. 19, Supplementary Table 3) supports the decision
to take 68% as a threshold. Given the fitted parameters, the MAOC
saturation before ΔSOC goes negative is 59%, 68% and 71%, for the BL,
PBL and NBL method, respectively.

Uncertainty propagation
We have performed an uncertainty propagation analysis based on the
associated error with the MAOC predictions from the soil VNIR spec-
tra. To assess the effect of marginal uncertainties in our MAOC pre-
dictions, we have approximated the expected error based on the
predicted POC+MAOC vs. measured SOC (Supplementary Fig. 3).
Given the negatively skewed distribution of SOC, we calculated the
mean absolute log error (MALE). The MALE is robust to outliers (high
SOC values). MALE reduces the effect of large differences between the
predicted and measured values and provides a better measure of the
relative difference. That is, the exponential of the MALE (EMALE)
represents the relative multiplicative error (once we subtracted 1). We
assumed the error to be normally distributed around the mean pre-
diction and that POC andMAOC contribute equally, so we divided the
EMALE by two. We then performed 500 simulations where we resam-
pled themeanMAOCpredictionwith a standarddeviation represented
by (EMALE-1) xMAOC (Supplementary Fig. 22).We then calculated the
MAOC saturation and SOC index for each of these 500 realizations of
MAOC.We calculated the 5th and 95th quantile for theMAOC saturation
(Supplementary Fig. 23) and for the areas of each SOC index class
(Table 1). See the Supplementary Material for further details.

Data handling, analysis and visualization was done using the fol-
lowing R packages: data handling with tidyverse68, prospectr69,
broom70, regressions with quantreg71, pls72, caret73, resemble74,
mgcv75, mgcViz76, segmented67, emmeans77 handling of spatial
objects using the raster78 and sf79 packages, clustering with the
cluster80 package. Graphics were created with base R functions,
rnaturalearth81, patchwork82 and the package ggplot283.

Data availability
The LUCAS 2009 soil survey and SOC fractionation data used in this
study are available in the European Soil Data Centre (ESDAC) of the
European Commission – Joint Research Centre under: http://esdac.jrc.
ec.europa.eu/content/lucas-2009-topsoil-data and https://esdac.jrc.
ec.europa.eu/content/soil-organic-matter-som-fractions. The main
outputs of this study are available at: https://esdac.jrc.ec.europa.eu/
content/soil-carbon-risk-index.

Code availability
Themost relevant R scripts to this manuscript are available at: https://
esdac.jrc.ec.europa.eu/content/soil-carbon-risk-index.
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